skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chadha, Charul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Additive manufacturing (AM) is often used to create designs inspired by topology optimization and biological structures, yielding unique cross-sectional geometries spanning across scales. However, manufacturing defects intrinsic to AM can affect material properties, limiting the applicability of a uniform material model across diverse cross-sections. To examine this phenomenon, this paper explores the influence of specimen size and layer height on the compressive modulus of polycarbonate (PC) and thermoplastic polyurethane (TPU) specimens fabricated using fused filament fabrication (FFF). Micro-computed tomography imaging and compression testing were conducted on the printed samples. The results indicate that while variations in the modulus were statistically significant due to both layer height and size of the specimen in TPU, variations in PC were only statistically significant due to layer height. The highest elastic modulus was observed at a 0.2 mm layer height for both materials across different sizes. These findings offer valuable insights into design components for FFF, emphasizing the importance of considering mechanical property variations due to feature size, especially in TPU. Furthermore, locations with a higher probability of failure are recommended to be printed closer to the print bed, especially for TPU, because of the lower void volume fraction observed near the heated print bed. 
    more » « less
  2. The equine hoof wall has a complex, hierarchical structure that can inspire designs of impact-resistant materials. In this study, we utilized micro-computed tomography (micro-CT) and serial block-face scanning electron microscopy (SBF-SEM) to image the microstructure and nanostructure of the hoof wall. We quantified the morphology of tubular medullary cavities by measuring equivalent diameter, surface area, volume, and sphericity. Highresolution micro-CT revealed that tubules are partially or fully filled with tissue near the exterior surface and become progressively empty towards the inner part of the hoof wall. Thin bridges were detected within the medullary cavity, starting in the middle section of the hoof wall and increasing in density and thickness towards the inner part. Porosity was measured using three-dimensional (3D) micro-CT, two-dimensional (2D) micro-CT, and a helium pycnometer. The highest porosity was obtained using the helium pycnometer (8.07%), followed by 3D (3.47%) and 2D (2.98%) micro-CT. SBF-SEM captured the 3D structure of the hoof wall at the nanoscale, showing that the tubule wall is not solid, but has nano-sized pores, which explains the higher porosity obtained using the helium pycnometer. The results of this investigation provide morphological information on the hoof wall for the future development of hoof-inspired materials and offer a novel perspective on how various measurement methods can influence the quantification of porosity. 
    more » « less
  3. null (Ed.)